Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Tao Zhang* and Xiao-Zeng You

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: hongtaozhang2000@yahoo.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.050 wR factor = 0.113 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 10 May 2005

Accepted 3 June 2005

Online 10 June 2005

N,*N*'-Bis(pyridin-4-ylmethyl)terephthalamide dihydrate: a self-interpenetrating hydrogen-bonding network

The title compound, $C_{20}H_{18}N_4O_2 \cdot 2H_2O$, has an inversion center at the mid-point of the central benzene ring. The asymmetric unit consists of one-half of an N^1, N^4 -bis-(pyridin-4-ylmethyl)terephthalamide molecule and one water molecule. The intermolecular hydrogen bonds connect the amide molecules and water molecules to produce a self-interpenetrating hydrogen-bonding network. The crystal packing is also governed by intermolecular π - π stacking and a weak C-H··· π interaction.

Comment

Non-covalent interactions, such as hydrogen bonding, $\pi - \pi$ stacking and $C-H\cdots\pi$ interactions, play a dominant role in supramolecular self-assembly (Casnati et al., 2003; Ghosh & Bharadwaj, 2004; Glidewell et al., 2005; Jennings et al., 2001). Moreover, the conformations of molecular building blocks have an important influence on the supramolecular structure. Generally, rigidity of molecule is helpful in the construction of a framework structure, while flexibility in a molecule can induce an interpenetrating structure (Batten & Robson, 1998). Accordingly, N-substituted aromatic amides should be useful molecular building blocks for assembling and investigating supramolecular architectures, because the amide C=O and the amide N-H groups could serve as a hydrogen bond acceptor and donor, respectively. Rigid aromatic rings, such as benzene or pyridine, could also be helpful for π - π stacking, while the σ -rotation of the amide N-C bond could induce flexibility in the molecule. In order to further understand supramolecular self-assembly through non-covalent interactions, we have designed and synthesized an N-substituted aromatic amide, the title compound, (I).

The asymmetric unit of the title compound consists of onehalf of an N^1, N^4 -bis(pyridin-4-ylmethyl)terephthalamide molecule arranged around an inversion center and an uncoordinated water molecule, as shown in Fig. 1. The amide group CO-N lies out of the benzene ring plane, with a dihedral angle of 22.4 (3)° between the benzene plane N2/C7/O1 and C8-C10/C8ⁱ-C10ⁱ [symmetry code: (i) -x, 1 - y, -z]. The

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), with displacement ellipsoids at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, 1 - y, -z.]

Figure 2

A packing diagram of (I), showing intermolecular hydrogen bonding (dashed lines). H atoms have been omitted.

amide plane is almost perpendicular to the pyridyl plane, with a dihedral angle of 89.85 $(15)^{\circ}$. It is interesting that the N2-C6 σ -bond is almost in the plane of the pyridyl ring [C4-C3- $C6-N2 = 0.7 (4)^{\circ}$, while the dihedral angle between phenyl plane and the pyridyl plane is 67.80 (24)°. The C3-C6-N2-C7 torsion angle of -86.2 (3)° indicates the flexibility arising from the amide N–C σ -rotation in the molecule. An intramolecular C4-H4...N2 hydrogen bond stabilizes the molecular conformation.

In the crystal structure, the hydrogen-bonding interactions between the uncoordinated water molecule and the amide group, as well as the pyridyl N atom, connect the amide and water molecules to form a three-dimensional self-interpenetrating network. The geometries of the hydrogen bonds are listed in Table 2. Moreover, the shortest intermolecular pyridine-pyridine separation of 3.845 (6) Å indicates the presence of π - π interactions, while the shortest phenyl-phenyl separations of about 8.11 Å indicate no significant π - π interaction. A weak intermolecular $C-H\cdots\pi$ [C10-H10 \cdots Cg1ⁱⁱ; Cg1 is the centroid of the N1/C1-C5 pyridyl ring; symmetry code: (ii) 1 - x, 1 - y, -z] interaction also contributes to stabilizing the solid-state structure.

Experimental

The title compound was synthesized by reaction of 4-(aminomethyl)pyridine and terephthaloyl dichloride according to the reported method (Buchan et al., 2002). Colorless block single crystals were obtained by slow evaporation of an aqueous solution. Analysis found: C 62.75, H 5.92, N 14.54%; calculated for C₂₀H₂₂N₄O₄: C 62.82, H 5.80, N 14.65%.

Crystal data

C H N O 2H O	$D_{-1.384} M_{0} m^{-3}$
$C_{20} I_{18} I_{4} O_{2} C_{21} I_{2} O_{2}$	$D_x = 1.364$ Wig III
$M_r = 382.42$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 573
a = 8.1173 (13) Å	reflections
b = 9.8449 (15) Å	$\theta = 3.0 - 19.2^{\circ}$
c = 13.6802 (17) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 122.944 \ (7)^{\circ}$	T = 298 (2) K
V = 917.4 (2) Å ³	Block, colorless
Z = 2	0.20 \times 0.10 \times 0.10 mm

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.980, \ T_{\max} = 0.988$
4470 measured reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.050$	independent and constrained
$wR(F^2) = 0.113$	refinement
S = 0.91	$w = 1/[\sigma^2(F_0^2) + (0.0437P)^2]$
1614 reflections	where $P = (F_0^2 + 2F_c^2)/3$
136 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

1614 independent reflections 969 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.048$ $\theta_{\rm max} = 25.0^{\circ}$ $h = -8 \rightarrow 9$ $k = -7 \rightarrow 11$ $l = -16 \rightarrow 15$

Table 1

Selected	geometric	parameters	(A,	°).	•
----------	-----------	------------	-----	-----	---

C6-N2 C7-01	1.446(3) 1 228(3)	C7-N2	1.340 (3)
01 - C7 - N2	122.0(3) 122.1(2) 121.0(2)	C7-N2-C6	122.6 (2)
C3 - C6 - N2 - C7	-86.2(3)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H7A\cdots O1$	0.85	2.17	2.879 (3)	140
$O2-H7B\cdots N1^{iii}$	0.85	2.35	2.834 (3)	116
$N2-H3\cdots O2^{iv}$	0.86	2.07	2.856 (3)	151
$C4 - H4 \cdots N2$	0.93	2.52	2.849 (3)	101

Symmetry codes: (iii) -x + 2, -y + 1, -z + 1; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

H atoms attached to C and N atoms were placed in calculated positions and refined using a riding model, with $Csp^2-H = 0.93$ Å, $Csp^3-H = 0.97$ Å and $Nsp^2-H = 0.86$ Å. All H atoms of the water molecules were located in difference maps at an intermediate stage of the refinement and were then treated as riding, with O-H = 0.85 Å.. In all cases, $U_{iso}(H)$ is $1.2U_{eq}$ of the parent atom.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT-Plus* (Bruker, 1997); data reduction: *SAINT-Plus* and *SHELXS97* (Sheldrick, 1997); program(s) used to solve structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* (Sheldrick, 2000).

This work was supported by the Postdoctoral Research Foundation of Nanjing University (No. 2003022).

References

Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.

- Bruker (1997). SMART (version 5.625) and SAINT-Plus (version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Buchan, S., Plater, M. J., Foreman, M. R. St J., De Silva, B. M., Skakle, J. M. S. & Slawin, A. M. Z. (2002), J. Chem. Crystallogr. 32, 5–10.
- Casnati, A., Sansone, F. & Ungaro, R. (2003). Acc. Chem. Res. 36, 246–254.
- Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5180–5182.
- Glidewell, C., Low, J. N., Škakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.
- Jennings, W. B., Farell, B. M. & Malone, J. F. (2001). Acc. Chem. Res. 34, 885– 894.
- Sheldrick, G. M. (1996). SADABS. Version 2.01. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.